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A b s t r a c t :  A short, regiospecific and first synthesis of (+)-galanolactone 5 and (+)- 
labdienedial I I was achieved from sclareol, respectively. © 1997 Elsevier Science Ltd. 

Galanolactone $ and (+)-(~-8(17), 12-1abdiene-15, 16-dial 1 1, new labdane-type diterpenes were 

isolated from Alpinia galanga by Morita et. al I and show cytotoxic, antifungal activities. Recently $ also 

shows anti-5-HT (serotonin) effect. 2 No information is available on the synthesis of optically active 

galanolactone 5 and labdienedial 1 1. Only total synthesis of galanolactone 5 as racemic form in multiple steps 

from geraniol was reported by Khuong-Huu et. al. 3 Its typical structure of epoxide and ct, ~ unsaturated 

lactone of galanolactone 5 is commonly found in insect antifeedant natural products such as azadirachtin 4 

isolated from the seeds of the neem, and ajugarin, 5 etc. Interesting biological activities, natural scarcity ( 0.002 

% for $ and 0.01% for 1 1, respectively) and labdane-type structure of 5 as a model for new agrochemicals 

prompted us to synthesize optically active galanolactone 5 and its related compounds. We report in this letter a 

short, regiospecific and first synthesis of (+)-galanolactone 5, (-)-8-epi-galanolactone 6 and (+)-labdienedial 

1 I in optically active forms from commercially availble sclareol 1 (Schemes 1 and 3). 

(-)-Sclareol 16 is readily available natural product whose structure is suited as a chiral synthon in 

the semi-synthesis of galanolactone 5 and labdienedial 1 1. Thus, oxidative degradation of (-)-sclareol 1 with 

osmium tetroxide and sodium periodate in aqueous t-butanol cleanly afforded the acetoxyaldehyde 26a,7,10 in 

one step s (65%) (Scheme 1). This reaction may be processed via the proposed intermediates, 6b A, B, and C 

and origin of the acetoxy group at C-8 of 2 could be derived from the original CH3 at C-16 of sclareol 1 and 

one oxygen of the osmate ester of the intermediate C. The compound 2 could serve as a versatile intermediate 

for synthesis of variety of biologically active natural products including galanal A 1 and warburganal. 9 In our 

synthesis, the acetoxy group at C-8 of compound 2 serves as a protecting group for the later-generating 

exomethylene group at C-8 of compound 4. Coupling of the aldehyde 2 with the anion of diethylphosphono- 

2-butyrolactone provided the isomeric lactones 3a (E-form) and 3b (Z-form), respectively, in the ratio of 3:1 

(yield 67 %). Separation of the isomers by column chromatography gave desired 3a. 10 While the NOESY 

spectrum of 3b showed interaction between 12-H (~5 6.75) and one of the 14-H (5 2.61) protons, no nOe 

enhancement was observed between 12-H (5 6.86) and 14-H (5 2.85) of 3a, establishing that 3a has E-form. 

Subsequent elimination of acetic acid at C-8 position of compound 3a with quinoline (reflux, 2 h) provided the 

desired exomethylene compound 410(71%). The other regio isomers (A 8,9 and A 7,8) were not detected. 

Final epoxidation of exomethylene at C-8 of compound 4 with mCPBA (1 eq.) at 0 °(2 exclusively afforded 

(-)-8-epi-galanolactone61° (45 %). As expected, no epoxidation occurred at the electron deficient 0t, I]- 

unsaturated double bond of the lactone 4. Natural galanolactone 5 was not detected. Steric hindrance by 
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butanolide ring in I~-face may force mCPBA approach in the direction of less hindered 0t-face, re, suiting in the 

epimer 6. However, with excess (2 eq.) mCPBA or peracetic acid and prolonged reaction time, the lactone 4 

successfully provided natural (+)-galanolactone 51,11 and (-)-8-epi-galanolactone 6 in the ratio of 1 to 3.4. 

" H ~ _ .  ~ ~' 16 COCH 3 

i = "'OH J-~ 

1 A B 

O \ O 
0 x 'Os=O - C H O  

H ~ , C )  - OAc ii . iii 

c / 3a + 3b 

O I o., 
o 

Scheme 1 Reagents and cond#ions: i OsO4(cat.)JNalO4(1.8 eq.), t-butanol, THF, 25 °C, 5.5h( 65 %); 
ii diethy(phosphono-2-butyrolactone ( 1.0 eq.), NaH(I.2 eq.), dry toluene, 0°C, 4 h. then 80 °C, 1 h. (67 %, 
E/Z=3/1); iii quinoline, reflux, 2h (71%); iv rnCPBA(2.0eq.), CHCI~ 0°(3, overnight (52 %). 

In another attempt, compound 2 was converted into compound 93,11 in three steps (overall yield 29 %) via 7 

and 81, ] z (Scheme 2). We failed again in our attempts to introduce the exomethylene function on 9 to give 

(+)-galanolactone 5 by treatment with dimethyl sulfonium methylide. 3 Compound 4 is a versatile intermediate 

for useful synthesis of galanolactone-related compounds. Reductive ring cleavage of 4 with excess LAH (5 

eq.) in anhydrous diethylether (room temperature, 2 h.) afforded dienediol 1 01° (yield 85 %). Subsequent 

oxidation of the diols of 1 0 with PCC (2.5 eq.) in methylene chloride cleanly provided the target compound, 

(+)-iabdienedial 1 II,  I i (81% yield) (Scheme 3). During this reduction-oxidation procedure, two olefin 

groups of 4 and 1 0 were left intact. 

In conclusion, our approach is highlighted by its simplicity and efficiency. We have outlined a first 
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synthesis of optically active (+)-galanolactone 5, (-)-8-epi-galanolactone 6 and (+)-(E_)-8 (17), 12-1abdiene- 15, 

16-dial 1 1 from readily available selareol. These syntheses make it possible to resolve the natural scarcity, to 

test further biological activities of galanolactone and its related compounds, and to provide labdane-type 

structure as a model for new agrochemicals. 
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Scheme 2 Reagents and conditions: i Collidine, reflux, 8 h, 68 %; ii ozone, -78°C, 30 min.,60 %; 
iii diethylphosphono-2-butymlactone (1.5 eq.), Nai l  (7 eq.), 0 °C, 2 h, 71%. 
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Scheme 3 Reagents and conditions: i LAH ( 5 eq.), ether, r.t., 2 h, [ 85 %] ; ii PCC ( 2.5 eq.), CH2CI 2, 
r. t., 50 rain., [81%]. 
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